
SC Corr-Code Package:
Theory and Reference Manual

Matthew S. Church
Ananth Group

Cornell University
msc336@cornell.edu

Version 1.1

October 29, 2018

This is the reference manual for the SC Corr-Code Package (FORTRAN)
developed by M. S. Church, S. V. Antipov and N. Ananth. It is available on
the Ananth group GitHub page and the Ananth Group website. The pack-
age contains a variety of methods that compute the real-time correlation
function within the framework of the semiclassical initial value representa-
tion. Here we provide some theoretical background and useful references for
additional reading, outline the structure of the program, and describe how
the program can be used and altered.

Contents

1 Introduction 3

1.1 Useful References . 3

2 Semiclassical Propagators 3

2.1 Van Vleck-Gutzwiller Propagator 3

2.2 Position-space (Van Vleck) SC-IVR 4

2.3 Coherent State (Herman-Kluk) SC-IVR 4

3 SC-IVR Correlation Functions 5

3.1 Linearized SC-IVR . 6

3.2 Mixed Quantum-Classical IVR 6

3.2.1 Forward-Backward MQC-IVR 7

3.2.2 Double-Forward MQC-IVR 8

4 Analytical Quantum-Classical IVR 9

https://github.com/AnanthGroup/SC-IVR-Code-Package
http://ananth.chem.cornell.edu/

5 Semiclassical Nonadiabatic Dynamics 10

5.1 The MInt Algorithm . 11

6 SC-IVR Code Package 11

6.1 Program Overview . 11

6.2 Running the Program . 12

6.3 The Makefile, External Libraries, and the MPI Submission
Script . 12

6.4 Tutorial 1: 1D Anharmonic Oscillator 13

6.5 Tutorial 2: 2D Anharmonic Oscillator 15

6.6 Altering the Code . 16

6.6.1 Tutorial 3: Other Potentials 17

6.6.2 Tutorial 4: Other Observables 18

6.7 Tutorial 5: Nonadiabatic Dynamics with MQC-IVR 19

6.8 The MonteCarlo files . 19

6.9 The supply files . 20

6.10 The traj files . 20

6.11 Other comments . 20

7 Acknowledgements 20

2

1 Introduction

Methods based on the semiclassical initial value representation (SC-IVR)
are a promising approach to simulating complex chemical systems in real-
time. They are rigorously derived, describe quantum effects accurately, and
employ near-classical trajectories. The aim of this program is to provide
several means of computing the real-time correlation function using the SC-
IVR formalism. We provide simple 1D and 2D model systems with which to
test and become familiar with the program, although the code is general, and
extensions to arbitrary multidimensional systems can be easily implemented,
as described below. Section II of this manual provides some brief theoretical
background of the SC-IVR formalism, and Section III provides a description
of the program structure as well as some useful tutorials.

1.1 Useful References

Textbooks:
1. D. Tannor “Introduction to Quantum Mechanics: A Time Dependent Perspec-
tive” Univ. Sci. Books, Chapter 10 (2007)
2. M.S. Child “Semiclassical Mechanics with Molecular Applications” Oxford Uni-
versity Press 2nd Ed.(2014)
3. M.C. Gutzwiller “Chaos in Classical and Quantum Mechanics” Springer-Verlag
(1990)
Journal Articles
4. W.H. Miller, J. Phys. Chem. A. 105, 2942 (2001)
6. S.V. Antipov, Z. Ye, and N. Ananth, J. Chem. Phys. 142, 184102 (2015)
7. M.S. Church, S.V. Antipov, and N. Ananth, J. Chem. Phys. 146, 234104
(2017)
8. M.S. Church, T.J.H. Hele, G.S. Ezra, and N. Ananth. J. Chem. Phys. 148,
102326 (2018)

2 Semiclassical Propagators

2.1 Van Vleck-Gutzwiller Propagator

We begin with a brief discussion of semiclassical propagators. Using the Feynman
path integral formulation of quantum mechanics, the amplitude associated with a
transition from position state |q0〉 to |qt〉 in time t is given by

〈qt|e−
i
~ Ĥt|q0〉 =

∫
D[q(t)] e

i
~S[q(t)]. (1)

The integral in Eq. (1) is over the continuum of paths, q(t), that begin at q0

and end at qt in time t. S[q(t)] is the action integral of the path, D[q(t)] is
the path differential, and Ĥ is the Hamiltonian. The oscillatory phase on the
right hand side of Eq. (1) suggests that stationary paths (i.e. the classical paths,
according to Hamilton’s principle) contribute the most to the transition amplitude,
whereas non-classical paths exhibit significant phase cancellation leading to lower
contributions. Expanding S[q(t)] around the classical paths to second order and
evaluating the integral analytically leads to the Van Vleck-Gutzwiller propagator
(VVG),

〈qt|e−
i
~ Ĥt|q0〉 =

∑
classical paths

√
1

(2πi~)N
det

∣∣∣∣ ∂qt
∂p0

∣∣∣∣−1

e
i
~S[q(t)], (2)

3

where p0 is the initial momentum of the trajectory starting at q0, and N is
the full system dimensionality. Since Eq. (2) is obtained as the stationary phase
approximation to the exact propagator, it is an exact replacement for Eq. (1) in
the limit that ~→ 0. Although this propagator is capable of describing virtually
all quantum effects, there are practical challenges to consider when computing
Eq. (2). Finding all trajectories that satisfy the double-ended boundary condition
requires a computationally inefficient search, and the prefactor may diverge when
the determinant of the N ×N matrix ∂qt

∂p0
approaches zero, among others.

2.2 Position-space (Van Vleck) SC-IVR

The trajectory search problem that arises from computing Eq. (2) can be removed
by formulating the propagator in terms of an integral over initial phase space
conditions. Using completeness to express the time evolution operator,

e−
i
~ Ĥt =

∫
dqt

∫
dq0 |qt〉 〈qt|e−

i
~ Ĥt|q0〉 〈q0| ,

and then substituting the expression in Eq. (2) for the transition amplitude we
obtain,

e−
i
~ Ĥt ≈ 1

(2πi~)
N
2

∑
classical paths

∫
dqt

∫
dq0 det

∣∣∣∣ ∂qt
∂p0

∣∣∣∣− 1
2

e
i
~St(p0,q0) |qt〉 〈q0| .

(3)

Now make a simple change of variables to replace the integral over dqt in Eq. 3
with an integral over dp0, ∑

classical paths

∫
dqt =

∫
dp0

∣∣∣∣ ∂qt
∂p0

∣∣∣∣,
to recover the Van Vleck-IVR (VV-IVR) expression for the propagator,

e−
i
~ Ĥt ≈ 1

(2πi~)
N
2

∫
dp0

∫
dq0 det

∣∣∣∣ ∂qt
∂p0

∣∣∣∣ 12 e i~St(p0,q0) |qt〉 〈q0| . (4)

Though the conversion removes the double-ended boundary condition and moves
the prefactor to the numerator, evaluating Eq. (4) remains challenging for multi-
dimensional systems due to the oscillatory phase and the lack of initial momentum
information with which to sample.

Note that VV-IVR can also be written in terms of momentum states as

e−
i
~ Ĥt ≈ 1

(2πi~)
N
2

∫
dp0

∫
dq0 det

∣∣∣∣∂pt
∂q0

∣∣∣∣ 12 e i~St(p0,q0) |pt〉 〈p0| . (5)

Due to the existence of more efficient methods, the propagators of Eq. (4) and
Eq. (5) are not included in this package. We discuss them here for pedagogical
reasons, and because they can be used to derive the linearized SC-IVR described
below.

2.3 Coherent State (Herman-Kluk) SC-IVR

An appealing alternative to the previously discussed propagators is the Herman-
Kluk IVR (HK-IVR), which is represented in the basis of coherent states as,

e−
i
~ Ĥt ≈ 1

(2π~)N

∫
dp0

∫
dq0 Ct(p0,q0) e

i
~St(p0,q0) |ptqt〉 〈p0q0| . (6)

4

The prefactor here is given by,

Ct(p0,q0) = det

∣∣∣∣γ 1
2
t Mqqγ

− 1
2

0 + γ
− 1

2
t Mppγ

1
2
0 − i~γ

1
2
t Mqpγ

1
2
0 +

i

~
γ
− 1

2
t Mpqγ

− 1
2

0

∣∣∣∣ 12 ,
with monodromy matrix elements Mαβ = ∂αt

∂β0
, and γt is an N×N diagonal matrix

describing the width of the coherent states. The coherent state wavefunctions in
position and momentum space are,

ψ(x̄) = 〈x̄|q p〉 =

(
det |γ|
πN

) 1
4

e−
1
2

(x̄−q)·γ·(x̄−q)+ i
~p·(x̄−q), (7)

ψ̃(p̄) = 〈p̄|q p〉 =

(
1

det |γ|πN

) 1
4

e−
1
2

(p̄−p)·γ−1·(p̄−p)− i~ p̄·q, (8)

respectively. HK-IVR is favorable over Eq. (4) and Eq. (5) since the coherent
states give rise to integrals that usually involve Gaussian forms and because co-
herent state matrix elements generally provide a convenient choice for importance
sampling both initial positions and momenta.

3 SC-IVR Correlation Functions

This package computes real-time correlation functions of the form

CAB(t) = Tr

[
Â e

i
~ ĤtB̂ e−

i
~ Ĥt

]
, (9)

with operator Â typically representing the initial state of the system, and operator
B̂ representing an observable. The SC-IVR correlation function is obtained by
replacing the quantum propagators in Eq. (9) with SC approximations previously
described. The double Van Vleck representation (DVV-IVR) of the correlation
function is then,

CAB(t) =
1

(2π~)N

∫
dp0

∫
dq0

∫
dp′t

∫
dq′t e

i
~ [St(p0,q0)+S−t(pt,qt)]

× det
∣∣Mqp M

′
qp

∣∣ 12 〈q0|Â|q′0〉 〈q′t|B̂|qt〉 (10)

with (p0,q0) and (p′t,q
′
t) the initial conditions of a forward and backward trajec-

tory, respectively. Similarly, the momentum representation is given by

CAB(t) =
1

(2πi~)N

∫
dp0

∫
dq0

∫
dp′t

∫
dq′t e

i
~ [St(p0,q0)+S−t(pt,qt)]

× det
∣∣Mpq M

′
pq

∣∣ 12 〈p0|Â|p′0〉 〈p′t|B̂|pt〉 . (11)

Finally there is the double Herman-Kluk correlation function (DHK-IVR),

CAB(t) =
1

(2πi~)2N

∫
dp0

∫
dq0

∫
dp′t

∫
dq′t e

i
~ [St(p0,q0)+S−t(pt,qt)]

× Ct(p0,q0)C−t(p
′
t,q
′
t) 〈p0q0|Â|p′0q′0〉 〈p′tq′t|B̂|ptqt〉 . (12)

Though each of these time correlation functions can formally capture all important
quantum effects, the oscillatory phase factors often make convergence impossible
to achieve with large multidimensional systems. It is clear that additional ap-
proximations are required to extend the applicability of these methods to complex
systems. Due to this challenge, and the other challenges associated with DVV-
IVR that were previously outlined, DHK-IVR is included in this program but
DVV-IVR and its momentum counterpart are not.

5

3.1 Linearized SC-IVR

The linearized approximation (LSC-IVR) assumes that the forward and backward
trajectories employed in calculating correlation functions, as described in the sec-
tion above, are very close to each other. It is derived by taking DVV-IVR and
converting to mean and difference variables: ∆α = α

′
t − αt, ᾱ = 1

2
(α
′
t + αt), with

α = p,q. After expanding all time-dependent quantities to first order in the dif-
ference variables, the expression reduces to a single phase space average over the
Wigner transforms of operators Â and B̂,

CAB(t) =
1

(2π~)N

∫
dp0

∫
dq0 Aw(p0,q0)Bw(pt,qt). (13)

The Wigner transform of a quantum mechanical operator Ω̂ is given by,

Ow(p,q) =

∫
dq̄ e−

i
~p·q̄ 〈q +

1

2
q̄|Ô|q− 1

2
q̄〉 . (14)

LSC-IVR has been widely used in simulations of condensed phase systems, however
this method generally fails to capture quantum coherence effects. It is included in
this package.

3.2 Mixed Quantum-Classical IVR

DHK-IVR is then the most appealing approach to incorporate all quantum effects
in MD simulations, but convergence is often too difficult to achieve due to the os-
cillatory phase. One approach to this problem is to use modified Filinov filtration
(MFF), which amounts to multiplying the integrand of DHK-IVR by a damping
factor,

F (z ; c) = det

∣∣∣∣I + ic
∂2φ

∂z2

∣∣∣∣ 12 e− 1
2
∂φ
∂z

T
c ∂φ
∂z . (15)

The damping factor down-weights the regions of z (i.e. the variables of integration)
where the phase, φ(z), varies quickly. And the extent of the damping is determined
by the diagonal matrix c. In the limit that c→ 0 then F (z, c)→ 1 and the original
integral, DHK-IVR, is recovered. In the limit that c → ∞ then DHK-IVR is
evaluated in the limit of stationary phase. MQC-IVR is derived by specifically
defining F (z, c) to damp phase contributions from diverging trajectory pairs. The
Forward-Backward (FB) form of MQC-IVR is given by,

CAB(t) =
1

(2π~)2N

∫
dp0

∫
dq0

∫
d∆p

∫
d∆q e

i
~ [St(p0,q0)+S−t(pt,qt)]

×Dt(p0,q0,∆p,∆q; cp, cq) 〈p0q0|Â|p′0q′0〉 〈p′tq′t|B̂|ptqt〉

× e−
1
2
∆T
q cq∆qe−

1
2
∆T
p cp∆p , (16)

with ∆q = q′t − qt and ∆p = p′t − pt. The prefactor, Dt, is given by

Dt = 2−
N
2 det(γ0G)

1
2 det

∣∣∣∣12(Mb
pp − iγ0M

b
qp)(G

−1 + I)(Mf
ppγ0 + iMf

pq)

+ (γ0M
b
qq + iMb

pq)(
1

2
γt + cp)G

−1(Mb
ppγ0 + iMf

pq)

+
1

2
(Mb

qq + iMb
pq)(G

−1 + I)(Mf
qq − iMf

qpγ0)

+ (Mb
pp − iγ0M

b
qp)(

1

2
γt + cq)G

−1(Mb
qq − iMf

qpγ0)

∣∣∣∣ 12 . (17)

6

Note that as the tuning parameters cp, cq → 0 we recover the original DHK-IVR
correlation function, and as cp, cq → ∞ we obtain a classical limit result similar
to LSC-IVR,

CAB(t) =
1

(2π~)N

∫
dp0

∫
dq0 〈p0q0|Â|p0q0〉 〈ptqt|B̂|ptqt〉 , (18)

which we refer to as the Husimi-IVR. With intermediate values of cp, cq, one
can select a set of tuning parameters that both reduces computational expense
and recovers accurate quantum information. Moreover, the tuning parameters
give us a handle over the ”quantumness” of any given degree of freedom in a
dynamically consistent framework. The following two subsections describe two
implementations of MQC-IVR.

3.2.1 Forward-Backward MQC-IVR

The first step in evaluating Eq. (16) is to sample the initial conditions of the
forward trajectory (p0,q0) as well as the phase space displacements at time t,
(∆p,∆q). For example, the models provided in this program define the initial
state as a pure coherent state, Â = |piqi〉 〈piqi|, so one sampling distribution in
this case may look like,

ω(p0,q0,∆p,∆q) = | 〈p0q0|piqi〉 |e−
1
2
∆T
q cq∆qe−

1
2
∆T
p cp∆p . (19)

The following diagram outlines how the program computes the dynamics of a
single trajectory beginning at (p0,q0). The initial point is propagated for a single
time step ∆t to point (pt,qt), followed by an instantaneous jump in phase space
to point (p′t,q

′
t). From there, a new trajectory is propagated backward for time

for ∆t to point (p′0,q
′
0). The process is repeated for each additional timestep.

A symplectic integrator (see below for details) is used to time-evolve the mon-
odromy matrix and classical action along with the corresponding forward and
backward trajectories.

The dimensionality of the integral can be reduced if operator B̂ is purely a function
of the position or momentum operator. For example, when B̂ = B(q̂) we can
collapse the coherent states at time t to position states by evaluating the following
limit,

lim
γt→∞

det(γt)
1
2 〈p′tq′t|B(q̂)|ptqt〉 = (4π)

N
2 δ(∆q)B

(
q′t + qt

2

)
. (20)

After inserting (20) into (16) and evaluating the integral over ∆q we have

CAB(t) = 2−2Nπ−
3N
2

∫
dp0

∫
dq0

∫
d∆p e

i
~ [St(p0,q0)+S−t(pt,qt)]

×Dq(p0,q0,∆p; cp) 〈p0q0|Â|p′0q′0〉B(qt)e
− 1

2
∆T
p cp∆p , (21)

7

with the prefactor now given by

Dq(p0,q0,∆p; cp) = det

∣∣∣∣γ−1
0 cp

[
(Mb

pp − iγ0M
b
qp)(M

f
ppγ0 + iMf

pq) (22)

+(γ0M
b
qq + iMb

pq)(M
f
qq − iMf

qpγ0)

+(Mb
pp − iγ0M

b
qp)c

−1
p (Mf

qq − iMf
qpγ0)

]∣∣∣∣ 12 .
Only momentum jumps are imposed in this limit. Similarly, we can evaluate
the limit that γt → 0 to recover an expression when operator B̂ is of the type
B̂ = B(p̂),

CAB(t) =
1

(2π~)2N

∫
dp0

∫
dq0

∫
d∆q e

i
~ [St(p0,q0)+S−t(pt,qt)]

×Dp(p0,q0,∆q; cq) 〈p0q0|Â|p′0q′0〉B(pt)e
− 1

2
∆T
q cp∆q , (23)

with the prefactor

Dp(p0,q0,∆q; cq) = det

∣∣∣∣γ−1
0 cq

[
(Mb

pp − iγ0M
b
qp)(M

f
ppγ0 + iMf

qp) (24)

+(γ0M
b
qq + iMb

pq)(M
f
qq − iMf

qpγ0)

+(γ0M
b
qq + iMb

pq)c
−1
q (Mf

ppγ0 + iMf
pq)

]∣∣∣∣ 12 .
When evaluating Eq. (21) the sampling distribution is the same as before, Eq. (19),
but with ∆q → 0. Likewise when evaluating Eq. (23) take ∆p → 0.

Note that only the general FB implementation of MQC-IVR, Eq. (16), is included
as a default option in this package. But the subroutines required to sample initial
conditions and compute prefactors for the specific cases of Eq. (21) and Eq. (23)
are also provided.

3.2.2 Double-Forward MQC-IVR

It is far more efficient to propagate two independent trajectories forward in time
than it is to use the forward-backward implementation of the previous section.
MQC-IVR can be re-derived to exploit this efficiency. Begin by using Liouville’s
theorem, dp′tdq′t = dp′0dq′0, to rewrite DHK-IVR,

CAB(t) =
1

(2π~)2N

∫
dp0

∫
dq0

∫
dp′0

∫
dq′0 e

i
~ [St(p0,q0)−St(p′0,q

′
0)]

× Ct(p0,q0)C∗t (p′0,q
′
0) 〈p0q0|Â|p′0q′0〉 〈p′tq′t|B̂|ptqt〉 . (25)

We now introduce a very similar MFF damping factor to filter trajectory pairs
that are widely displaced only at time t = 0, rather than at all t. The final result
is given by

CAB(t) =
1

(2π~)2N

∫
dp0

∫
dq0

∫
dp′0

∫
dq′0 e

i
~ [St(p0,q0)−St(p′0,q

′
0)]

×Dt(p0,q0,p
′
0,q
′
0; cp, cq) 〈p0q0|Â|p′0q′0〉 〈p′tq′t|B̂|ptqt〉

× e−
1
2
∆T
q0

cq∆q0 e−
1
2
∆T
p0

cp∆p0 . (26)

8

with ∆p0 = p′0 − p0 and ∆q0 = q′0 − q0, and the prefactor is given by

Dt = det(
1

2
γ−1
t G)

1
2 det

∣∣∣∣12(Mf
pp − iγtMf

qp)(G
−1 + I)(Mb

ppγt + iMb
pq)

+(γtM
f
qq + iMf

pq)(
1

2
γ−1

0 + cp)G
−1(Mb

ppγt + iMb
pq)

+
1

2
(γtM

f
qq + iMf

pq)(G
−1 + I)(Mb

qq − iMb
qpγt)

+(Mf
pp − iγtMf

qp)(
1

2
γ0 + cq)G

−1(Mb
qq − iMb

qpγt)

] 1
2

. (27)

The limits of the filtering strength are identical to the FB implementation, yielding
Eq. (25) as cp, cq → 0, and yielding the Husimi-IVR as cp, cq → ∞. In this

program, the default sampling distribution generates mean (x̄ = 1
2
(x
′
0 − x0)) and

difference variables at time zero,

ω(p0,q0,p
′
0,q
′
0) = | 〈p̄ q̄|piqi〉 |e−

1
2
∆p0

cp∆p0 e−
1
2
∆q0

cq∆q0 . (28)

From the mean and difference variables we can transform to (p0,q0) and (p′0,q
′
0).

Each of these points are then independently propagated forward in time.

Under the FB implementation, the total number of phase space points to evolve
per trajectory pair goes as 1

2
N(N2

t + 3Nt), where Nt is the number of time steps.
With the DF implementation, however, the scaling goes as 2NNt: a significant
improvement in computational expense.

4 Analytical Quantum-Classical IVR

One existing challenge with DF MQC-IVR is the task of choosing an optimal set
of tuning parameters to minimize phase information as well as loss of accuracy.
One approach to this challenge is to simply choose a subset of full-system dofs to
quantize (say we choose F of them), and evaluate DF MQC-IVR in the limit that
the tuning parameters of the F quantum dofs go to zero, and the limit that the
tuning parameters of the remaining N −F classical dofs go to infinity. The result
is an analytical quantum-classical limit of DHK-IVR,

CAB(t) =
1

(2π)N+F

∫
dz

F∏
j=1

[∫
dz′j

]
ei[St(z)−St(z′1,...,z

′
F ,zF+1,...,zN)]

×Ct(z; γ0, γt)C
∗
t (z′1, . . . , z

′
F , zF+1, . . . , zN)Λt(z, z

′
1, . . . , z

′
F). (29)

For convenience we have used a different notation to represent the phase space
variables, z = (p0,q0). Note that the initial conditions of the classical dofs are
the same in a given trajectory pair, and the initial conditions of the quantum
dofs are different. This similarity in initial conditions gives rise to significant
phase cancellation, but the displacements among the quantum dofs gives rise to

9

enough phase information so as to retain quantum mechanical accuracy. The
additional prefactor, Λt(z, z

′
1, . . . , z

′
F), accounts for treating the classical dofs in

the stationary phase limit of MFF and is given by

Λt(z, z
′
1, . . . , z

′
F) = (−1)

N
2 det

[
I + Σ(KT)−1

] 1
2
, (30)

where I is the 4N × 4N identity matrix, KT is a complex 4N × 4N matrix given
by,

KT =

(
X X∗

YM′ Y∗M

)
, (31)

with 2N × 2N blocks,

X =

(
i
2
γ0 − 1

2
I

1
2
I i

2
γ−1

0

)
, (32)

Y =

(
i
2
γt

1
2
I

− 1
2
I i

2
γ−1
t

)
, (33)

and M and M′ are the full 2N × 2N monodromy matrices for the trajectories
beginning at z and z′, respectively. We also have,

Σ =

(
Ω Ω∗

O O

)
, (34)

(Ω)jk =



i(1− 1
2
γjj)δj,k F < j, k ≤ N,

i(1− 1
2
γ−1
jj)δj,k N + F < j, k ≤ 2N,

− 1
2
δj−N,k N + F < j ≤ 2N,F < k ≤ N,

1
2
δj,k−N F < j ≤ N,N + F < k ≤ 2N

0 else.

(35)

5 Semiclassical Nonadiabatic Dynamics

One way of representing a general F -level vibronic system with continuous vari-
ables is with the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian,

H =
1

2
PTM−1P +

1

2
pTV(R)p +

1

2
xTV(R)x− 1

2
Tr [V(R)] , (36)

where (P,R) and (x,p) are nuclear and electronic phase space variables, respec-
tively, V(R) is the F × F diabatic electronic potential energy matrix, M is a
G×G diagonal matrix of nuclear masses, and G is the number of nuclear degrees
of freedom. In this representation, the electronic mapping variables (x,p) are
restricted to the singly-excited harmonic oscillator subspace. For example, the
total wavefunction of a nuclear wavepacket, |φ〉, occupying electronic state s in an
F -level system may be given by

|Ψ〉 = |φ 0102 . . . 1s . . . 0F 〉 , (37)

where |0λ〉 and |1λ〉 are the ground and first excited harmonic oscillator states
associated with the mapping variables of electronic state λ, (xλ, pλ).

The SC correlation functions outlined in the previous sections can easily be applied
to systems evolved under the MMST Hamiltonian because each degree of freedom,
both nuclear and electronic, is represented by a continuous phase space variable.
The MInt algorithm for computing trajectories and the monodromy matrix with
the MMST Hamiltonian is outlined in the following section.

10

5.1 The MInt Algorithm

It is known that when a Hamiltonian is decomposed to a sum of sub-Hamiltonians,
a symmetric composition of exact evolutions under the sub-Hamiltonians results in
an approximate evolution under the total Hamiltonian that is exactly symplectic.
By symplectic we mean that the following condition,

MTJ−1M = J−1, (38)

where M is the monodromy matrix and J is the structure matrix,

J =

(
O I
−I O

)
, (39)

is conserved exactly. We therefore split Eq. (36) into two parts,

H = H1 +H2 (40)

H1 =
1

2
PTM−1P (41)

H2 =
1

2
pTV(R)p +

1

2
xTV(R)x− 1

2
Tr [V(R)] , (42)

and define the following flow map,

ΨH,∆t = ΦH1,∆t/2 ◦ ΦH2,∆t ◦ ΦH1,∆t/2, (43)

which defines the propagation scheme. The symbol ΦHi,t represents exact evolu-
tion under Hamiltonian Hi for time t, i.e. ΦHi,t(z0) = zt, and the circles represent
the composition operation: f ◦ g(z) = f(g(z)). In words, Eq. (43) says to first
propagate the system under H1 for half a timestep, then propagate the system
under H2 for a full timestep, and then under H1 again for another half timestep.
So long as the sub-evolutions are exact the total evolution, ΨH,∆t, will be exactly
symplectic. Hamilton’s equations are therefore solved according to the scheme in
Eq. (43). See reference 8 of Section 1.1 for a complete derivation of the equations
of motion for the phase space variables and monodromy matrix. Also see J. Chem.
Phys., 136 084101 (2012) by Kelly et. al. for additional reference.

6 SC-IVR Code Package

6.1 Program Overview

The package contains a collection of FORTRAN programs that compute the SC-
IVR correlation functions of Eqs. (12), (13), (16), (18), (21), (23) and (26) for 1D,
multidimensional, and nonadiabatic systems. The input file theory.in allows you
to choose which SC-IVR to use, and defines all simulation parameters one would
need. We provide three adiabatic model systems that may serve as a template for
other systems of your choosing: the harmonic oscillator,

V (x) =
1

2
mω2x2, (44)

an anharmonic oscillator

V (x) =
1

2
mω2x2 − 0.1x3 + 0.1x4, (45)

and a 2D system-bath model where Eq. (45) is coupled to a harmonic mode

V (x, y) =
1

2
mxω

2
xx

2 − 0.1x3 + 0.1x4 +
1

2
myω

2
yy

2 + kxy. (46)

11

Also included is a nonadiabatic model system with two electronic states and one
nuclear degree of freedom. Elements of the diabatic electronic potential energy
matrix for this system are given by

V11(R) = V0 [1 + tanh (αR)] (47)

V22(R) = V0 [1− tanh (αR)] (48)

V12(R) = ae−bR
2

, (49)

with parameters specified in the program.

For the adiabatic model systems, the program computes a quantity of the form

〈B〉t = 〈piqi|e
i
~ ĤtB̂e−

i
~ Ĥt|piqi〉 , (50)

which is Eq. (9) with an initial coherent state projection for operator Â = |piqi〉 〈piqi|.
With the provided models, you have the choice of taking B̂ = q̂ or B̂ = p̂. In
the nonadiabatic model system, the program computes the particle’s momentum
distribution after it traverses the crossing region,

C(Pf) = lim
t→∞

〈PRiRi1102|δ(Pf − P̂)|PRiRi1102〉 , (51)

given that the initial state of the system is a nuclear coherent state occupying
electronic state 1.

6.2 Running the Program

Here, we assume a UNIX or Windows-X or MAC-OSX terminal environment. In
the parent directory, specify the SC-IVR of your choice as well as your input
parameters in the file theory.in, and then execute the bash script execute.sh.
This will generate a directory called EXPERIMENT which contains the program you
specified. Typing make while in the EXPERIMENT directory will compile the program
and generate an executable file dyn.x. To run the program, type ./dyn.x to start
the simulation. All system parameters in the input 1D (input mD) file can be
edited without having to recompile the program, but changing the first five system
options will do nothing while you are in the EXPERIMENT directory; these can only
be specified in the parent directory.

Note that executing the bash script execute.sh will overwrite an existing EXPERIMENT

directory, so the EXPERIMENT directories you generate should be renamed to be safe.

If you intend to parallelize the calculation with MPI, then use jobrun.sh to sub-
mit the script (see below, this script will need to be edited according to your
computational resources).

6.3 The Makefile, External Libraries, and the MPI Submission Script

In the directory makefiles is a universal makefile. When the script execute.sh

is run, the makefile is copied into the EXPERIMENT directory, and a simple search-
and-replace routine tailors the makefile to your specifications there. Depending
on your operating system, the makefile in the makefiles directory may need to
be edited. Note that we specify paths to the LAPACK and BLAS libraries in the
makefile, and mpif90 is used as well.

Also note that we do NOT encourage you to edit the names of any FORTRAN
files, modules or scripts that do not sit in the EXPERIMENT directory, as this may
prevent the program from assembling the EXPERIMENT directory appropriately.

In the directory Scripts there is a submission script called jobrun.sh. This uses
the Portable Batch System (PBS) scheduler, and will need to be edited if another
scheduler is used.

12

6.4 Tutorial 1: 1D Anharmonic Oscillator

In the parent directory, set up the input file theory.in to compute the average
position of the anharmonic oscillator with the Husimi-IVR.

Degrees of freedom

1

Level of theory (...

2

Implementation (...

1

Type of observable (...

1

Model Potentials (...

2

List the diagonal ...

1.0

List the coherent state and ...

1.0 0.0 1.414 1.414 10.0 10.0

Timestep, number of timesteps, ...

0.05 1400 1e-5

Number of trajectories

120000

Leave an arbitrary number for the tuning parameters when the MQC-IVR is not
being used, in this case we use 10.0. Also, even though the Implementation line is
irrelevant in this case, leave it as 1 for the Husimi and LSC-IVRs. Execute the bash
script with sh execute.sh. This generates a directory called EXPERIMENT which
contains the program specified by the input file. Rename the EXPERIMENT directory
and cd into it. There are several FORTRAN files in the experiment directory. The
input file in this directory is called input 1D: a copy of the theory.in file from the
parent directory. The file MonteCarlo 1D.f90 contains subroutines that generate
initial configurations for each of the 1D implementations, params 1D.f90 contains
the global parameters and a subroutine that reads the input file, traj 1D.f90

contains subroutines that propagate the classical trajectories (depending upon the
type of SC-IVR), potential 1D.f90 contains the model potentials, jobrun.sh is
a submission script for jobs using MPI, and supply 1D.f90 contains a symplectic
integrator and various subroutines that compute matrix elements and prefactors.
The file HUS timecorr 1D.f90 contains the program which computes the corre-
lation function, drawing upon the subroutines that you originally specified in
theory.in. Note that the default potential parameters (in this case the frequency
ω) are hard-coded in the potential subroutine of the file potential 1D.f90. Start
the simulation with ./dyn.x (∼ 20sec) and plot the real part of the result con-
tained in the file TCF.out. This should resemble the following figure.

13

� �� �� �� �� �� �� ��

-���

���

���

���

���� ����

<
�
>
�
��
�
�

�� ���������� ����������� ������� ��������

Now go back to the parent directory and start a new experiment, identical to the
previous one but with the Double-Forward MQC-IVR and cp = cq = 10. The
input file theory.in should read

Degrees of freedom

1

Level of theory (...

3

Implementation (...

1

Type of observable (...

1

Model Potentials (...

2

List the diagonal ...

1.0

List the coherent state and ...

1.0 0.0 1.414 1.414 10.0 10.0

Timestep, number of timesteps, ...

0.05 1400 1e-5

Number of trajectories

120000

Compile and run the program as before (∼ 1min) and compare the two results.
The large amplitudes at later times should be apparent in the MQC-IVR result,
as shown in the figure below. This is characteristic of the exact quantum result,
which the MQC-IVR approaches as the cp, cq → 0. This limit however requires
more trajectories.

14

� �� �� �� �� �� �� ��

-���

���

���

���

���� ����

<
�
>
�
��
�
�

�� ���������� ����������� ������� ��������

6.5 Tutorial 2: 2D Anharmonic Oscillator

Now we will compute the average momentum of an anharmonic oscillator that is
coupled to a heavy harmonic mode with the Husimi-IVR. Recall that the potential
energy parameters (in this case the two frequencies and coupling constant) are
hard-coded into the potential energy subroutine. The theory.in file should read

Degrees of freedom

2

Level of theory (...

2

Implementation (...

1

Type of observable (...

2

Model Potentials (...

2

List the diagonal ...

1.0 25.0

List the coherent state and ...

1.0 0.0 1.414 1.414 10.0 10.0

1.0 0.0 8.333 8.333 10.0 10.0

Timestep, number of timesteps, ...

0.05 1400 1e-5

Number of trajectories

36000

With this input file, generate an EXPERIMENT directory, compile, run the simulation
(∼ 1min), and plot the result in TCF.out. The real part is plotted in the following
figure.

15

� �� �� �� �� �� �� ��

-�

-�

�

�

�

���� ����

<
�
>
�
��
�
�

�� ���������� ����������� ������� ��������

In order to observe the average momentum of the harmonic mode of this sys-
tem rather than the anharmonic mode, vi into the file HUS timecorr mD.f90 and
change the doflabel in line 37 from 1 to 2. Re-compile with make and then run
the simulation. The real part of the output is shown in the following figure.

� �� �� �� �� �� �� ��

-�

-�

-�

-�

�

�

�

�

���� ����

<
�
>
�
��
�
�

�� ����������� ������� �������� �� �������� ����

6.6 Altering the Code

We do not advise that you alter any files, directories, or scripts unless they cre-
ated in an EXPERIMENT directory. In order to design your own experiment, it is
suggested that you use theory.in to generate an EXPERIMENT directory with the
SC-IVR of your choosing with an arbitrary model potential. Then while working
in the EXPERIMENT directory you have the freedom to alter the potential and any
subroutine you may wish to edit. The next two tutorials suggest how an original
experiment can be created.

16

6.6.1 Tutorial 3: Other Potentials

We wish to calculate the average position of the anharmonic oscillator which is
now coupled to two identical harmonic bath modes. We’ll use the Double-Forward
MQC-IVR and a large tuning parameter to set up theory.in as follows.

Degrees of freedom

3

Level of theory (...

3

Implementation (...

1

Type of observable (...

1

Model Potentials (...

2

List the diagonal ...

1.0 25.0 25.0

List the coherent state and ...

1.0 0.0 1.414 1.414 1000 1000

1.0 0.0 8.333 8.333 1000 1000

1.0 0.0 8.333 8.333 1000 1000

Timestep, number of timesteps, ...

0.05 1400 1e-5

Number of trajectories

36000

Generate an EXPERIMENT directory with this input file and cd into it. The program
will compile but the potential energy subroutine needs to account for the third
body. This is found in potential mD.f90; vi into this file and edit the potential
to include the second harmonic mode. Use the same potential parameters as the
other bath mode. The subroutine should now read

v = x(1)**2 - 0.1d0*x(1)**3 + 0.1d0*x(1)**4 &

+ 0.5d0*ky*x(2)**2 + coupling*x(1)*x(2) &

+ 0.5d0*ky*x(3)**2 + coupling*x(1)*x(3)

dv(1) = 2.d0*x(1) - 0.3d0*x(1)**2 + 0.4d0*x(1)**3 &

+ coupling*x(2) + coupling*x(3)

dv(2) = ky*x(2) + coupling*x(1)

dv(3) = ky*x(3) + coupling*x(1)

d2v(1,1) = 2.d0 - 0.6d0*x(1) + 1.2d0*x(1)**2

d2v(1,2) = coupling

d2v(1,3) = coupling

d2v(2,1) = coupling

d2v(2,2) = ky

d2v(2,3) = 0.d0

d2v(3,1) = coupling

d2v(3,2) = 0.d0

d2v(3,3) = ky

Compile and run the program (∼ 4min). The real part of the output should look
as follows.

17

� �� �� �� ��

-�

-�

�

�

���� ����

<
�
>
�
��
�
�

�� ���������� ����������� ������� ��������

6.6.2 Tutorial 4: Other Observables

If the observable you wish to use is not one of the two provided (p̂ or q̂), then
expressions for the following must be derived and coded into the program.

〈p′
tq

′
t|B̂|ptqt〉 (FF-MQC-IVR, DHK-IVR)

〈ptqt|B̂|ptqt〉 (HUSIMI-IVR)
Bw(pt,qt) (LSC-IVR)
B(pt,qt) (FB-MQC-IVR)

The subroutines in the supply *.f90 files can be edited for this purpose if you
don’t wish to write your own. For example, repeat the calculation from the previ-
ous tutorial but use B̂ = x̂2 rather than x̂. To evaluate the matrix element, insert
a complete set of position states and evaluate the integral analytically,

〈p′tq′t|x̂2|ptqt〉 =

∫
dx 〈p′tq′t|x̂2|x〉 〈x|ptqt〉

= 〈p
′
ztz
′
t|pztzt〉 〈p

′
yty
′
t|pytyt〉

∫
dx x2 〈p

′
xtx
′
t|x〉 〈x|pztzt〉

=
1

4

(
2

γx
− 1

γ2
x

(
p
′
tx − ptx + i(qtx + q

′
tx)γx

)2) 〈p′tq′t|ptqt〉 ,
where we have used both Eq. (7) and Eq. (??). The code near line 132 of
supply mD.f90 should now be edited to look something like the following.

Bq = 0.25d0*(2.d0/WidthT(1,1)-(pp(1)-p(1)+Iu*(q(1)+qp(1))&

*WidthT(1,1))**2/WidthT(1,1)**2)&

*dexp(-0.25d0*dot_product(q-qp,q1)-0.25d0*dot_product(p-pp,p1))&

*cdexp(-0.5d0*Iu*dot_product(p+pp,q-qp))

Compile and run the program, the output is plotted in the following figure.

18

� �� �� �� ��

�

�

�

�

�

�

�

���� ����

<
�
�
>
�
��
�
�

�� ���������� ����������� ������� ���������

6.7 Tutorial 5: Nonadiabatic Dynamics with MQC-IVR

An EXPERIMENT directory containing a program that uses DF MQC-IVR to sim-
ulate the model nonadiabatic system can be created simply by entering -1 under
Degrees of freedom in the theory.in file.

Degrees of freedom

-1

All other entries in the input file are neglected here. Running the script execute.sh
will then generate the EXPERIMENT directory containing the appropriate program.
Note that it is typical of a semiclassical calculation of nonadiabatic systems to
require a large number of trajectories to converge. So a quantum-limit calculation
with MQC-IVR will require parallelization. See reference 8 of section 1.1 for an
idea of the convergence requirements.

6.8 The MonteCarlo files

In each of the MonteCarlo subroutines we use a Gaussian random number gener-
ator to produce initial configurations. The function gauss takes in the standard
deviation σ of the sampling distribution and outputs a phase-space point. For
example, the following sampling distribution is used with the 1D Husimi-IVR,

ω(p0, q0) =
1

2π
e−

γ0
2

(q0−qi)2e
− 1

2γ0
(p0−pi)2 . (52)

So the use of

gauss(1/dsqrt(Width0)) + qIn

and

gauss(dsqrt(Width0)) + pIn

generates the sampled points q0 and p0, respectively, from Eq. (52). Note that
the normalization constant is either hard-coded into the timecorr files, or absent
all together if it cancels with constants that appear in the correlation function. In
the present case of the 1D Husimi-IVR it is absent altogether.

19

6.9 The supply files

The supply files contain formulas for the coherent state overlap, the coherent state
matrix elements of the provided operators, all SC-IVR prefactors, a fourth-order
symplectic integrator, and an MPI initialization subroutine.

6.10 The traj files

The traj files contain three subroutines that take in an initial phase space point
and output arrays containing trajectories, classical action, and monodromy ma-
trix elements at each time step. Most of the provided SC-IVR methods use the
subroutine PropagateFwd FF to accomplish this, the otherwo are specifically used
for the FB-MQC-IVR. Each of the three subroutines are configured to signal a
flag when energy conservation or symplecticity breaks to within a small tolerance
that is specified in the input file (default 10−5). A flagged trajectory is halted and
removed from the statistics.

6.11 Other comments

When running execute.sh, certain combinations of system options in theory.in

will signal a flag and suggest to you how to proceed.

7 Acknowledgements

We acknowledge Dr. Sergey Antipov for providing version 1 of the MQC-IVR
code, Srinath Ranya for comprehensive testing of the current implementation,
and Dr. Timothy J. H. Hele for provided version 1 of the MInt algorithm code.
We further acknowledge ARO (Grant No. W911NFD-13-1-0102) for funding.

20

	Introduction
	Useful References

	Semiclassical Propagators
	Van Vleck-Gutzwiller Propagator
	Position-space (Van Vleck) SC-IVR
	Coherent State (Herman-Kluk) SC-IVR

	SC-IVR Correlation Functions
	Linearized SC-IVR
	Mixed Quantum-Classical IVR
	Forward-Backward MQC-IVR
	Double-Forward MQC-IVR

	Analytical Quantum-Classical IVR
	Semiclassical Nonadiabatic Dynamics
	The MInt Algorithm

	SC-IVR Code Package
	Program Overview
	Running the Program
	The Makefile, External Libraries, and the MPI Submission Script
	Tutorial 1: 1D Anharmonic Oscillator
	Tutorial 2: 2D Anharmonic Oscillator
	Altering the Code
	Tutorial 3: Other Potentials
	Tutorial 4: Other Observables

	Tutorial 5: Nonadiabatic Dynamics with MQC-IVR
	The MonteCarlo files
	The supply files
	The traj files
	Other comments

	Acknowledgements

