
MAVARIC

Version 1.0

User Manual

Elliot Eklund

Cornell University
ece52@cornell.edu

Table of Contents

1 Introduction 2

1.1 Overview . 2

1.2 Using MAVARIC . 3

1.3 Tutorial Model System . 4

1.4 Input Files . 4

1.5 Compiling and Running MAVARIC . 5

2 Monte Carlo 7

3 Sampling 14

4 Dynamics 19

5 Potentials 23

5.1 Macros . 24

5.2 Valarray . 25

5.3 State Independent Potential . 26

5.4 Gradient of State Independent Potential 27

5.5 State Specific Potential Energy Surfaces 28

5.6 Gradient of State Specific Potential Energy Surfaces 30

5.7 Potential Energy Coupling . 31

5.8 Derivative of Potential Energy Coupling 32

5.9 Complicated Model . 33

6 References 38

1

1SECTION

Introduction

1.1 Overview

This user manual contains instructions on how to use the program MAVARIC: MApping

VARiable Integration Code. MAVARIC is a program for running simple, one-dimensional

Mapping Variable Ring Polymer Molecular Dynamics (MV-RPMD) calculations as de-

scribed in Ananth[1]. It can be used to calculate position centroid auto-correlation func-

tions of a general s-level system in which the user specifies the form of the potential

energy surfaces and coupling. The position centroid auto-correlation function is calcu-

lated by propogating classical equations of motion (EOM) from the MV-RPMD Hamil-

tonian,

H =
N∑
α=1

(P 2
α

2M
+ M

2β2
N

(Qα−Qα+1)2 +V0(Qα)+ 1

βN
(xα ·xα+pα ·pα)

)
− 1

βN
ln|Θ| (1)

Here, {Qα} and {Pα} are the set of nuclear position and momentum for each bead, re-

spectively. N is the number of beads, β = 1/kT , and βN = β/N . {xα} and {pα} are the

set of electronic "position" and "momenta" for each bead, respectively. Each electronic

variable is a vector of length s. Θ is defined as,

Θ(Q,x,p) = Re(Tr(Γ(Q,x,p))) (2)

2

Γ is a matrix defined as,

Γ(Q,x,p) =
N∏
α=1

(Cα(xα,pα)− 1

2
I)M (Qα). (3)

Cα, referred to as the "C Matrix", is defined as

Cα(xα,pα) = (xα+ i pα)⊗ (xα− i pα)T (4)

And finally, M (Rα), referred to as the "M Matrix", is defined as

Mn,m(Qα) =
e−βN Vnn (Qα) n = m

−βN Vn,m(Qα)e−βN Vnn (Qα) n 6= m
(5)

It is not the intention of this manual to review the theory behind MV-RPMD in detail.

For further information regarding MV-RPMD, please read Ananth[1].

The EOM are propogated using a fourth-order Adams-Bashforth-Moulton (ABM) pre-

dictor corrector integration scheme[2]. The initial steps of the ABM integrator are found

using a fourth-order Runge-Kutta integrator[2].

1.2 Using MAVARIC

MAVARIC is designed so that a molecular dynamics calculation can be split into three

manageable phases. These phases are Monte Carlo, Sampling, and Dynamics. All three

phases can be run sequentially, or broken up into pieces depending on the user’s needs.

In brief, we outline what each phase is meant to accomplish in the overall computation.

The first phase, Monte Carlo, is used to establish convergence parameters at equilib-

rium. This includes performing bead convergence and energy estimator convergence.

Monte Carlo performs a standard Monte Carlo simulation using the Metropolis-Hastings

algorithm for acceptance/rejection criteria[3].

The Sampling phase is used after convergence of equilibrium parameters has been es-

tablished. During Sampling, the user samples decorrelated trajectories that will eventu-

ally be used to perform dynamics calculations. These samples are generated via Monte

Carlo simulation. However, unlike the Monte Carlo phase, Sampling does not compute

the energy estimator. As a result, Sampling is much faster at running a Monte Carlo

simulation because it is able to skip the energy estimator calculation. The sampled tra-

jectories can be histogramed to check the position centroid distribution.

The final phase is Dynamics. Once a sufficient number of trajectories have been sam-

pled, we are ready to run a dynamics calculation. During this phase, we can monitor

3

how well our trajectories are conserving energy. This useful for deciding an appropri-

ate time step to be used by the integrator during the simulation. We are also able to

calculate position centroid auto-correlation functions during the Dynamics phase. As

mentioned above, the EOM are propogated with a fourth-order ABM integrator, and the

initial steps are found with a fourth-order Runge-Kutta integrator.

In the following sections, we describe each of these phases in detail. This is done as

a tutorial that works through all the steps necessary to calculate the position centroid

auto-correlation function of a model system.

1.3 Tutorial Model System

The model system we use in the tutorial is Model 1 of Ananth[1]. This is a two state

system with state specific potential energy surfaces

V11(Q) = aQ + c (6)

V22(Q) =−aQ (7)

and off-diagonal coupling elements V12 =V21 =∆. The state independent potential is

V0(R) = 1

2
kQ2. (8)

The values of the parameters are c = 0, k = a = 1, and ∆ = 0.1. Other parameters that

are needed to fully define the Hamiltonian are M =β= 1 and N = 4. All units are in a.u.

except for N , which is unitless. Throughout the rest of this manual, we will simply refer

to this model as “Model 1”.

Upon downloading MAVARIC, the potential energy surfaces and coupling will be con-

figured to Model 1. The input files will also be configured for these parameters, however,

you will be asked to change these parameters throughout the tutorial. At the end of the

tutorial, in Section 5, we will explain how to change the potential energy surfaces to your

system of interest.

1.4 Input Files

MAVARIC contains five input files through which calculations are requested and certain

model parameters can be specified. These files are found in the directory InputFiles. It is

crucial that the number of lines in each file never change. Adding or deleting a line will

cause the program to crash. In addition, the format of each line should never change.

The format should always be a descriptive phrase, followed by a colon (:), followed by

a positive number. There are only primitive error handling measures in place to detect

deviations from this format - proceed with caution!

4

Many of the parameters used to request a calculation take binary input. These param-

eters use 1 to request the specified calculation, and 0 otherwise. Here is a list of all

binary parameters used by MAVARIC. The parameters are listed under the file they can

be found in.

MonteCarlo

Run MC

Save PSV

Save MC Data

Read PSV

Read MC Data

Sampling

Run Sampling

Save Sampled Trajectories

Histogram Positions

Read PSV

Dynamics

Run Dynamics

Read Trajectories

Check Energy Conservation

Please keep these in mind when working with MAVARIC.

1.5 Compiling and Running MAVARIC

MAVARIC is intended for Linux and Mac OS X operating systems. MAVARIC is written in

C++ and will only work with compilers compatible with C++ 11 or higher. MAVARIC pro-

vides a makefile for compiling the code which can be found in the directory MAVARIC.

The default compiler in the makefile is set to Intel’s distribution of the C++ compiler. To

change the compiler, modify the second line of the makefile. Just make sure it is C++ 11

compatible! To compile the code, enter make into the terminal.

This version of MAVARIC is not parallelized. In the future, a version of MAVARIC wirtten

in parallel will be released.

5

In Section 5 we will discuss how to configure user specified potential energy surfaces.

Doing so will require the user to modify C++ code. Every time an edit is made to a

file containing C++ code, MAVARIC must be re-compiled! The safest way to re-compile

MAVARIC is navigate to the directory MAVARIC and enter clean into the terminal. Af-

ter clean has finished executing, enter make. If successful, you should see no error

messages. Forgetting to re-compile after altering a MAVARIC C++ file means that any

changes made won’t actually be implemented during run time.

To run MAVARIC, enter ./mavaric into the terminal. An output message will always

appear on the terminal with information regarding whether or not MAVARIC success-

fully completed the requested calculations.

6

2SECTION

Monte Carlo

The Monte Carlo phase is used to determine equilibrium convergence parameters. You

can request calculations for the Monte Carlo phase using the input file MonteCarlo,

located in the InputFiles directory. After downloading MAVARIC, the file MonteCarlo

should contain exactly seven lines in the following format:

MonteCarlo

Run MC:0

MC Moves:1e5

Estimator Rate:1e2

Save PSV:0

Save MC Data:0

Read PSV:0

Read MC Data:0

In the directory InputFiles, you should also find a file called SystemParameters and a file

called ElecParameters. SystemParameters contains parameters for specifying the sys-

tem model. ElecParameters contains parameters that specify the electronic states of our

model. After download, SystemParameters should contain exactly four lines in the fol-

lowing format:

7

SystemParameters

Mass:1

Beads:4

Temperature:1

MC Step Size:1

ElecParameters should contain exactly two lines in the following format:

ElecParameters

States:2

MC step size:1

The parameters Mass, Beads, and Temperature correspond to M , N , and T in β =
1/T of Eq. 1 in Section 1. Both M and T are in a.u. States is the number of electronic

states in our model. Both files contain a parameter called MC Step Size which will

be discussed below. Its units are also given in atomic units.

Let’s start the tutorial by changingRun MC:0 toRun MC:1 in the MonteCarlo file. Run

the code after you have made this change. If done successfully, you will see the following

message:

Calculating...

Running Monte Carlo calculations ...

MonteCarlo Results:

System Acceptance Ratio: 25.8661

Electronic Acceptance Ratio: 22.9134

Average Energy: 0.619438

Successfully wrote energy_estimator file to Results.

Monte Carlo Simulation Run Time: 0.163655

Finished Calculations

Because Monte Carlo simulations are a stochastic process, yourSystem Acceptance

Ratio,Electronic Acceptance Ratio, andAverage Energywill differ slightly

from the example above. Additionally,Monte Carlo Simulation Run Timewill

be dependent on the machine executing MAVARIC.

8

Let’s discuss this output. The lines System Acceptance Ratio and Electronic

Acceptance Ratio tell us the percentage of moves that were successfully accepted

for the system and electronic degrees of freedom, respectively. In this case, roughly 26%

of the time, our system moves were accepted, and roughly 23% of the time, our elec-

tronic moves were accepted. Typically, we want both acceptance ratios to be around

50%. If we lower the parameterMC Step Size in the SystemParameters file, we should

see the System Acceptance Ratio increase. Similarly, if we lower the parameterMC Step

Size in the ElecParameters file, we should see the Electronic Acceptance Ratio increase.

Navigate to the SystemParameters file and change MC Step Size to 0.55. Similarly,

in ElecParameters, change MC Step Size to 0.48. After making these changes, run

MAVARIC. You should now find acceptance ratios close to those reported below:

System Acceptance Ratio: 49.7047

Electronic Acceptance Ratio: 49.4914

Once we have found good Monte Carlo step sizes, we can work on converging energy.

In the directory Results is a file called energy_estimator. This file contains the energy

estimator computed throughout the most recently requested Monte Carlo simulation.

Every time the Monte Carlo phase is executed, energy_estimator is overwritten with the

latest results. In Figure 1, we plot energy_estimator.

Figure 1: Average Energy throughout a short Monte Carlo simulation.

9

As one would expect, the average energy fluctuates rapidly at the beginning of the sim-

ulation, and gradually flattens toward the end as our system approaches equilibrium.

Model 1, and most other models you will work with, take far more than 105 Monte Carlo

steps for energy to converge. To change the number of Monte Carlo steps in a given

simulation, modify MC Moves in the file MonteCarlo. For now, increase the value of MC

Moves to 107. The next time we run MAVARIC, the Monte Carlo simulation will take 107

steps.

Typically, we do not need to write the average energy to file after every Monte Carlo step.

For example, writing the average energy after every 103 steps is probably high enough

resolution to understand how the average energy is converging. We can control how of-

ten the average energy is written to file with the parameterEstimator Rate. Change

the value of Estimator Rate to 103. Now when we run the calculation using MC

steps:1e7 and Estimator Rate:1e3, we will write out the average energy after

every 103 steps, giving us a total of 104 points being written to file. After making these

changes, re-run MAVARIC and plot energy_estimator. It should look similar to Figure 2

below.

Figure 2: Average Energy throughout a longer Monte Carlo simulation.

Notice that Figure 2 is much flatter than Figure 1 toward the end of the simulation. Now

we can be more confident that energy is converging.

10

After we run a Monte Carlo simulation, our system should be in a state that is much

closer to equilibrium in comparison to its initial state. Unfortunately, every time we

re-run a Monte Carlo simulation, our initial state is randomly generated, and we lose

information about the equilibrium state gained from the previous simulation. Instead

of starting from scratch each time a Monte Carlo simulation is run, MAVARIC allows the

user to save the final state of the system following a Monte Carlo simulation, and use it

as a starting point for later simulations.

To save the information from your Monte Carlo calculation, open the file MonteCarlo

and change Save PSV to 1 and Save MV Data to 1 as well. Make these changes,

then re-run the simulation. You should find the following print statement:

Calculating...

Running Monte Carlo calculations ...

MonteCarlo Results:

System Acceptance Ratio: 49.9421

Electronic Acceptance Ratio: 49.9112

Average Energy: 0.575902

Successfully wrote energy_estimator file to Results.

Successfully saved PSV to Results.

Successfully saved MC data to Results.

Monte Carlo Simulation Run Time: 14.4884

Finished Calculations

This indicates that the phase space variables (PSV) and other Monte Carlo data were

successfully saved after the simulation. The directory Results will now contain two new

files called PSV and mc_data. These files contain the saved data. Figure 3 below is a

plot of the average energy for the simulation we just ran. We will say more about it in a

moment.

11

Figure 3: Monte Carlo simulation start from random initial state.

To read in data that has been saved , change Read PSV to 1 and Read MC Data to 1

in the MonteCarlo file. Make these changes, then re-run the MAVARIC. If done success-

fully, you should see the following message:

Calculating...

MonteCarlo Results:

Successfully read PSV file from Results.

Successfully read MC datat from Results.

System Acceptance Ratio: 49.9243

Electronic Acceptance Ratio: 49.9717

Average Energy: 0.550436

Successfully wrote energy_estimator file to Results.

Successfully saved PSV to Results.

Successfully saved MC data to Results.

Monte Carlo Simulation Run Time: 14.7865

12

This indicates that the files were successfully read. Let’s look at the energy estimator

plot for the simulation that we just ran in Figure 4 below.

Figure 4: Monte Carlo simulation starting from saved initial state.

The fluctuations in Figure 4 are much smaller than Figure 3 and we no longer see mas-

sive fluctuations at the start of the simulation. This is because after running the simula-

tion that generated Figure 3, we saved the final phase space variables and energy. Then,

when we ran the simulation that produced Figure 4, we first read in those saved phase

space variables and energy, then started the simulation. This means our starting point

was much closer to equilibrium for the simulation that produced Figure 4 in compari-

son to Figure 3.

This demonstrates how running a Monte Carlo simulation can be broken up into chunks.

If you find that your Monte Carlo simulation was not long enough to converge energy,

you can simply start another simulation at the point where you left off, running the cal-

culation for longer this time. Be careful when reading in files. If no files were saved

previously, then trying to read in PSV and mc_data will cause an error.

Once you are satisfied with how energy is converging, you can increase the number of

beads in the SystemParameters file and repeat the process outlined in this section. This

is typically done for a range of bead numbers to establish bead convergence.

13

3SECTION

Sampling

The Sampling phase is used to generate a distribution of trajectories that will eventually

be used in the Dynamics Phase. The trajectories are sampled using a Monte Carlo sim-

ulation, however, the energy estimator is not calculated during Sampling because it is

assumed that the average energy has already been converged. The step size of system

and electronic moves are set by the parameter MC Step Size in the input files Sys-

temParameters and ElecParameters, respectively. Requesting calculations for Sampling

is done via the input file Sampling. After installation, the Sampling file should contain

exactly seven lines in the following format:

Sampling

Run Sampling:0

Number of Trajectories:1e4

Decorrelation Length:1e2

Save Sampled Trajectories:0

Histogram Positions:0

Number of Bins:300

Read PSV:0

To use Sampling, simply change Run Sampling to 1. In the current example, 104 tra-

jectories will be sampled. Between each new trajectory that is sampled, we perform

an additional 102 Monte Carlo steps to ensure the trajectories are sufficiently decorre-

lated. To change the number of sampled trajectories or decorrelation length, modify the

parameters Number of Trajectories and Decorrelation Length, respec-

14

tively.

Let’s try running a Sampling calculation. In the MonteCarlo file, configure the parame-

ters in the following way:

MonteCarlo

Run MC:1

MC Moves:1e6

Estimator Rate:1e3

Save PSV:0

Save MC Data:0

Read PSV:0

Read MC Data:0

In the Sampling file, only change Run Sampling to 1. After making these changes,

run the code. If everything worked correctly, you should see the following output:

Calculating...

Running Monte Carlo calculations ...

MonteCarlo Results:

System Acceptance Ratio: 50.0492

Electronic Acceptance Ratio: 49.9594

Average Energy: 0.6922

Successfully wrote energy_estimator file to Results.

Monte Carlo Simulation Run Time: 1.4755

Running Sampling ...

Sampling Run Time: 0.509911

Finished Calculations

MAVARIC began the program by running a Monte Carlo simulation, producing the cor-

responding Monte Carlo output messages when it finished. Then, it entered a Sampling

calculation, also producing an output message upon completion.

15

Let’s run another Sampling calculation, but this time, we will generate a histogram of

the sampled position centroids. To do this, open the Sampling file and change theHis-

togram Positions parameters to 1. Additionally, change Number of Trajec-

tories to 1e5. We can control the number of bins our histogram uses by modifying

the Number of Bins parameter. For now, we will leave it at 300 bins. After making

these changes, re-run the simulation. If done correctly, the Sampling output message

should now include a histogram statistics report that looks like the following:

–- Histogram Statistics –-

Mode: -0.342636

Average: -0.00551759

Standard Deviation: 1.24748

Skew: 0.0284287

To view the histogram, plot the file pos_histogram in the Results directory. Figure 5 below

is an example of what the histogram should look like. Of course, increasing the number

of trajectories will produce a smoother histogram.

Figure 5: Histogram using 300 bins with 105 Trajectories

16

The Sampling calculation we have done so far have been have been after first running

a Monte Carlo calculation. The final state of our system after the Monte Carlo calcula-

tion is what Sampling uses as its initial state. If equilibrium was successfully established

during Monte Carlo, than all our sampled trajectories produced during Sampling should

follow the equilibrium Boltzmann distribution.

Instead of starting with a Monte Carlo simulation, we can read in phase space variables

that have been saved to the PSV file in the Results directory. This way, we do not need

to run Sampling immediately after Monte Carlo. If we have saved our phase space vari-

ables after a Monte Carlo simulation, we can read them back in at a later time and start

MAVARIC at Sampling. To read in saved phase space variables, change Read PSV to 1.

In addition, we can save trajectories that we have sampled. To do this, change Save

Sampled Trajectories to 1. Now, after we run a sampling calculation, all the tra-

jectories will be saved to the directory Results/Trajectories.

As a demonstration, run a Monte Carlo simulation and select to save both PSV and

mc_data. Do this without running Sampling; i.e., set Run Sampling to 0. If done

successfully, you should see the following message:

Calculating...

Running Monte Carlo calculations ...

MonteCarlo Results:

System Acceptance Ratio: 49.8436

Electronic Acceptance Ratio: 50.1265

Average Energy: 0.622538

Successfully wrote energy_estimator file to

Results.

Successfully saved PSV to Results.

Successfully saved MC data to Results.

Monte Carlo Simulation Run Time: 1.46195

Finished Calculations

17

Now, run Sampling without doing a Monte Carlo simulation first; i.e. set Run MC to

0 and Run Sampling to 1. In addition, set Save Sampled Trajectories and

Read PSV both to 1. If done successfully, you will see the following message:

Calculating...

Running Sampling ...

Successfully read PSV from Results.

–- Histogram Statistics –-

Mode: 0.0924216

Average: 0.000271159

Standard Deviation: 1.24538

Skew: -0.014498

Successfully saved sampled trajectories to Results/Trajectories.

Sampling Run Time: 11.1057

Finished Calculations

The directory Results/Trajectories should now contain four files titled P, Q, xelec, and

pelec. These are the sampled trajectories that you have just saved. Saving sampled tra-

jectories allows the user to read them in later when working with the Dynamics phase.

That way, work can be done in chunks and one does not need to go directly from Sam-

pling to Dynamics.

18

4SECTION

Dynamics

The Dynamics phase calculates the position centroid auto-correlation function within

the MV-RPMD framework. EOM are propogated using a 4th order Adams-Bashforth-

Moulton predictor-corrector integration scheme. Requesting calculations for Dynamics

is done via the input file Dynamics. After download, the Dynamics file should contain

exactly sixe lines in the following format:

Dynamics

Run Dynamics:0

Run Time:5

Time Step:0.01

Read Trajectories:0

Check Energy Conservation:0

Conservation Tolerance:0.1

To run Dynamics, change Run Dynamics to 1. The parameter Run Time specifies

the total time in atomic units for Dynamics to run. Time Step specifies the size of the

time step, d t , used by the integrator.

19

As a first example, configure the MonteCarlo, Sampling, and Dynamics input files to

matching the following.

Monte Carlo

Run MC:1

MC Moves:1e7

Estimator Rate:1e4

Save PSV:0

Save MC Data:0

Read PSV:0

Read MC Data:0

Sampling

Run Sampling:1

Number of Trajectories:1e4

Decorrelation Length:1e2

Save Sampled Trajectories:0

Histogram Positions:0

Number of Bins:300

Read PSV:0

Dynamics

Run Dynamics:1

Run Time:5

Time Step:0.005

Read Trajectories:0

Check Energy Conservation:0

Conservation Tolerance:0.1

Run MAVARIC with this set of configurations. You should see the following output after

MAVARIC finishes:

20

Calculating...

Running Monte Carlo calculations ...

MonteCarlo Results:

System Acceptance Ratio: 49.9658

Electronic Acceptance Ratio: 50.0111

Average Energy: 0.562923

Successfully wrote energy_estimator file to Results.

Monte Carlo Simulation Run Time: 16.0427

Running Sampling ...

Sampling Run Time: 0.570696

Running Dynamics ...

Successfully wrote pos_auto_corr to Results.

Dynamics Run Time: 65.9003

Finished Calculations

After the calculation has finished, the Results directory will contain a file called pos_auto_corr.

This file contains the position centroid auto-correlation function. In figure 6 Below is a

plot of the auto-correlation function for the simulation we just ran.

To run a calculation using more or less trajectories, change the parameter Number of

Trajectories in Sampling.

MAVARIC provides a way to monitor how well trajectories are conserving energy through-

out the course of a calculation. If we change Test Energy Conservation to 1 in

the Dynamics file, MAVARIC will now check how well energy is being conserved. The pa-

rameter Conservation Tolerance allows us to specify the tolerance to which we

want each trajectory to conserve energy. For example, whenConservation Toler-

ance is set to 0.1, this means a trajectory will be considered "broken" (not conserving

energy) if its initial energy and current energy differ by more than 10%. Once a trajec-

tory is broken, MAVARIC will stop propagating it and move on to the next trajectory. At

the end of the Dynamics calculation, the percentage of broken trajectories is reported.

As a demonstration, run MAVARIC using the same input file configurations as previ-

ously, but with Test Energy Conservation set to 1. If done correctly, the Dy-

21

Figure 6: Position Centroid Auto-Correlation function using 104 trajectories.

namics output message should be similar to the following:

Running Dynamics ...

Percentage of Trajectories Broken: 30

Dynamics Run Time: 53.209

This indicates that 30% of our trajectories failed to conserve energy to within 10% of

their initial energy. A proper Dynamics simulation should aim for a much lower per-

centage of broken trajectories. Lowering Time Step will decrease the number of tra-

jectories that fail to conserve energy.

Finally, if sampled trajectories were saved during the Sampling phase, they can be read

in during the Dynamics phase. To do this, change Read Trajectories to 1. This

will read in trajectories stored in the directors Results/Trajectories. If no trajectories have

been saved, then trying to read them in will cause an error. Being able to read in trajec-

tories means we do not need to run MonteCarlo, Sampling, and Dynamics in sequence.

If sampled trajectories have been saved, then we can skip MonteCarlo and Sampling,

and jump straight to Dynamics.

22

5SECTION

Potentials

So far, this tutorial has only worked with one model that was pre-configured upon down-

load. To change that model, you will need to change the potential energy surfaces and

coupling. Making these changes is done in the file Potentials.h which is found in

the directory Potentials. Potentials.h is a special file type called a C++ header file.

This is the only C++ file a user who wishes to use MAVARIC as a black box device will

have to worry about modifying.

Potentials.h makes use of six functions that need to be edited to fully specify a

model. Throughout this section, we will discuss those functions in detail using Model

I as an example. At the end of the section, we will consider a more complicated model

and the changes that would need to be made to implement it.

Before discussing the different functions, we need to become somewhat familiar with

two important C++ features that Potentials.h makes use of. These are macros and

valarrays.

23

5.1 Macros

Typically, our potential energy surfaces and couplings contain parameters that need to

be specified by the user. For example, if our system independent potential energy is the

following,

V0(Q) = 1

2
kQ2, (9)

then we need to be able to specify the parameter k in Potentials.h. We specify pa-

rameters using a C++ macro. The best way to understand a macro is to see an example.

Toward the top of Potentials.h are the following three lines:

#define DELTA 0.1

#define A 1.0

#define D 0.0

Each of these defines a macro. Any new macro that you define must be placed before

the line struct Potentials{ . The general format for defining a macro is

#define NAME value. It is common practice for the name of the macro to be in all

caps. Once the macro is defined, you can use it anywhere in Potentials.h by typing

its name. You should think of using a macro the same way you would a regular variable.

The only parameters that do not need to be defined as macros are the number of beads,

number of electronic states, the product of the number of beads with number of elec-

tronic states, and mass. This is because Potentials.h always has access to these

variables. They are represented by the following variables

int num_beads

int num_states

int elec_size

double mass

which are defined in the lines immediately following struct Potentials{ . They

can be used in any of the functions inside Potentials.h.

24

5.2 Valarray

The standard vector and array classes in C++ lack support for many vector features that

are convenient when working with mathematical operations. There is a lesser known

C++ vector class called valarray which does support these features. Potentials.h

makes use of valarray when working with a vector of bead positions. We will now pro-

vide a brief discussion of how to work with a valarray, however, more information can

be found at http://en.cppreference.com/w/cpp/numeric/valarray.

Without using valarray, mathematical operations on vectors in C++ would have to be

performed with for loops. For example, element-wise multiplication between two vec-

tors v and w would involve looping over all the elements in v and w and multiplying

them one-by-one. If the two vectors are valarrays, we can make use of the element-wise

multiplication function that valarray supports. The syntax for element-wise multiplica-

tion is v * w. As another example, let’s consider summing all the elements in a vector.

The valarray function for this operation is called sum(). To sum the elements of a

valarray v, we simply type v.sum().

In general, if there is a mathematical operation you want to perform over all the ele-

ments of a vector, valarray should have a function for doing so. As a final example, let’s

compute the dot product between v and w. To do this, we need to combine two oper-

ations, element-wise multiplication and summation. The syntax we would use is (v *

w).sum().

Vallary also supports array slicing - the ability to access chunks of an array at one time.

For example, if we have an valarray x with ten elements, we can access the first five

elements using the syntax x[std::slice(0,5,1)]. This syntax means starting at

position 0, grab the first 5 elements in intervals of 1. In general, the syntax is

x[std::slice(a,b,n)]. This means starting at position a, return the first b ele-

ments in intervals of n.

Now that we have covered the two main data types used by Potentials.h, we will

turn to discussing the six functions that Potentials.h uses.

25

http://en.cppreference.com/w/cpp/numeric/valarray

5.3 State Independent Potential

The state independent potential energy of a model is defined in the function V0. After

download, V0 should look like the following:

inline double V0(const std::valarray<double> Q){

return 0.5*(Q*Q).sum();

}

Mathematically, V0 corresponds to the term
∑N
α=1 V0(Qα) in the MV-RPMD Hamilto-

nian. V0 takes a valarray of bead positions as its argument, Q, and returns a single

value, the energy corresponding
∑N
α=1 V0(Qα). In Model I, V0 is a harmonic oscillator,

which means V0 returns
∑N
α=1

1
2Q2

α.

26

5.4 Gradient of State Independent Potential

The gradient of the state independent potential energy with respect to bead position is

defined in the function dV0_dQ. After download, dV0_dQ should look like the follow-

ing:

inline std::valarray<double> dV0_dQ

(const std::valarray<double> Q){

return Q;

}

Mathematically,dV0_dQ corresponds to∇QV0. We need this term to calculate the forces

used in the integration scheme. dV0_dQ takes a valarray of bead positions as its argu-

ment, Q, and returns a valarray corresponding to ∇QV0. The elements of the returned

valarray are (∂V0(Q1)
∂Q1

, ∂V0(Q2)
∂Q2

, . . . , ∂V0(QN)
∂QN

).

In Model I, V0 is a harmonic oscillator. Mathematically, its derivative with respect to

a particular bead’s position is ∂V0(Qα)
∂Qα

= Qα. The valarray returned by dV0_dQ will be

(Q1,Q2, . . . ,QN).

27

5.5 State Specific Potential Energy Surfaces

The state specific potential energy surfaces are defined in the the function Velec. After

download, Velec should look like the following:

inline void Velec(const std::valarray<double> &Q,

std::valarray<double> &Vout){

//state 1

Vout[std::slice(0,num_beads,1)] = A*Q + D;

//state 1

Vout[std::slice(num_beads,num_beads,1)] = -A*Q;

}

Mathematically, Velec corresponds to the diagonal Vnn(Qα) elements of the M Matrix

(Eq 4 of Section 1). Velec takes two valarrays as arguments. The first argument, Q, is a

valarray of bead positions: (Q1,Q2, . . . ,QN). The second argument, Vout, corresponds

to the evaluation of Vnn over Q. Vout is a valarray of length elec_size. In Model I,

the state specific potential energy surfaces are

V11(Qα) = aQα+d (10)

V22(Qα) =−aQα (11)

Velec needs to evaluate both V11 and V22 over every element of (Q1,Q2, . . . ,QN). Let’s

think about how many computations we will need to do during this process. The num-

ber of beads in our system is num_beads, and the number of states is num_states.

This means we need to perform num_beads * num_states number of computa-

tions. V11 will be computed num_beads times for each Qα, and V22 will be computed

num_beads times for each Qα as well.

The first num_beads calculations will be to evaluate V11(Qα) over all num_beads po-

sitions and store the result inVout. This means the firstnum_beads elements ofVout

are now (V11(Q1),V11(Q2), . . . ,V11(QN)).

Next, we evaluate state V22(Qα) over all num_beads positions and store the result in

Vout. Similarly, the second num_beads elements of Vout are now

(V22(Q1),V22(Q2), . . . ,V22(QN)). In total, Vout will contain the elements

(V11(Q1),V11(Q2), . . . ,V11(QN),V22(Q1),V22(Q2), . . . ,V22(QN)).

28

Velec uses valarray’s slicing features to store elements in Vout. To access the first

num_beads elements of Vout, we write Vout[std::slice(0,num_beads,1)].

To access the next num_beads elements. we write

Vout[std::slice(num_beads,num_beads,1)].

29

5.6 Gradient of State Specific Potential Energy Surfaces

The gradient of the state specific potential energy surfaces with respect to bead position

is defined in the function dVelec. After download, dVelec should look like the fol-

lowing:

inline void dVelec(const std::valarray<double> &Q,

std::valarray<double> &Vout){

//state 1

Vout[std::slice(0,num_beads,1)] = A;

//state 1

Vout[std::slice(num_beads,num_beads,1)] = -A;

}

Mathematically, dVelec corresponds to (∇QV11,∇QV22). The layout of the function is

identical to Velec, except the elements of Vout are now ∂Vnn (Qα)
∂Qα

. For Model I, we have

∂V11(Qα)

∂Qα
= a (12)

∂V22(Qα)

∂Qα
=−a (13)

The elements of Vout are (V ′
11(Q1),V ′

11(Q2), . . . ,V ′
11(QN),V ′

22(Q1),V ′
22(Q2), . . . ,V ′

22(QN)).

30

5.7 Potential Energy Coupling

The potential energy coupling is defined in the function V_couple. After download,

V_couple should look like the following:

inline double V_couple(const double &Q, int state1, int state2)

{

return DELTA;

}

Mathematically, V_couple corresponds to the off-diagonal potential energy coupling,

Vn,m(Qα), where n 6= m. This function takes three arguments: Q, state1, and state2.

The first argument, Q, is the position of a single bead, Qα. Note that this is not a valar-

ray. The next two arguments indicate which two states we are calculating the coupling

element between. For example, state1 = 0 and state2 = 1would correspond to

the element V1,2(Qα). Notice that the C++ syntax for the states and the indices of the

mathematical description differ by one. This is because C++ starts its indexing at zero!

Keep this in mind when working with Potentials.h.

In Model I, we have a two state system with constant coupling. As a consequence, we

do not need to worry about which states we are computing the coupling between since

they all have the same coupling. Below, we will consider a case where coupling is not

constant and does depend on which states we are considering. In Model I, the coupling

term DELTA is defined as a macro.

31

5.8 Derivative of Potential Energy Coupling

The derivative of the potential energy coupling with respect to bead position is defined

in the function dV_couple. Following download, dV_couple should look like the

code below:

inline double dV_couple(const double &Q, int state1, int state2)

{

return 0;

}

Mathematically, dV_couple corresponds to
∂Vn,m (Qα)

∂Qα
, where n 6= m. This function

takes three arguments, which are the same as arguments as V_couple: Q, state1,

and state2. The layout of dV_couple is identical to V_couple, except now we are

dealing with derivatives. In Model I, which uses constant coupling,dV_couple returns

0.

It is important to recognize that dV_couple is returning a number and not a valar-

ray. For reasons that are not important to using MAVARIC, it is easier to work with the

derivative of the potential energy coupling with respect to a single bead rather than the

entire gradient.

32

5.9 Complicated Model

Let’s walk through one more example using a significantly more complicated model.

We will use a three state model with non-constant coupling. Our state independent

potential is,

V0(Qα) = c1Q4
α+ c2Q2

α. (14)

The three state dependent terms are,

V11(Qα) = D1

(
1−e−B1(Qα−R1)

)2
(15)

V22(Qα) = D2

(
1−e−B2(Qα−R2)

)2
(16)

V33(Qα) = D3

(
1−e−B3(Qα−R3)

)2
(17)

(18)

Finally, the coupling terms are

V12(Qα) =V21(Qα) =A12e−g12(Qα−Q12)2
(19)

V13(Qα) =V31(Qα) =A13e−g13(Qα−Q13)2
(20)

V23(Qα) =V32(Qα) =A23e−g23(Qα−Q23)2
(21)

(22)

Before touching any code, we need to compute the necessary derivatives. The derivative

of the state independent potential is,

∂

∂Qα
V0(Qα) = 4c1Q3

α+2c2Qα. (23)

The derivatives of the state dependent terms are,

∂

∂Qα
V11(Qα) =−2B1D1 eB1(R1−Qα) (eB1(R1−Q) −1

)
(24)

∂

∂Qα
V22(Qα) =−2B2D2 eB2(R2−Qα) (eB2(R2−Q) −1

)
(25)

∂

∂Qα
V33(Qα) =−2B3D3 eB3(R3−Qα) (eB3(R3−Q) −1

)
(26)

Finally, the derivatives of the coupling terms are,

∂

∂Qα
V12(Qα) = ∂

∂Qα
V21(Qα) =−2g12 A12(Qα−Q12)e−g12(Qα−Q12)2

(27)

∂

∂Qα
V13(Qα) = ∂

∂Qα
V31(Qα) =−2g13 A13(Qα−Q13)e−g13(Qα−Q13)2

(28)

∂

∂Qα
V23(Qα) = ∂

∂Qα
V32(Qα) =−2g23 A23(Qα−Q23)e−g23(Qα−Q23)2

(29)

A good place to get started coding up our model is to define all our macros - there are a

lot in this model.

33

#define C1 1.0

#define C2 2.0

#define D1 0.5

#define D2 0.3

#define D3 0.2

#define B1 10.0

#define B2 20.0

#define B3 30.0

#define R1 1.0

#define R2 1.0

#define R3 1.0

#define A12 17.0

#define A13 20.0

#define A23 23.0

#define G12 1.0

#define G13 1.0

#define G23 1.0

#define Q12 3.0

#define Q13 3.0

#define Q23 3.0

Remember, these need to be defined before the line struct Potentials{ . Please

note that the values we’ve assigned to the macros above are completely arbitrary and

only for the sake of demonstration.

To code the state independent potential energy surface, we could do the following:

inline double V0(const std::valarray<double> Q){

return B1*(Q*Q*Q*Q).sum() + B2*(Q*Q).sum();

}

34

For the gradient of the state independent potential energy surface, we would write,

inline std::valarray<double> dV0_dQ

(const std::valarray<double> Q){

return 4.0*C1*(Q*Q*Q) + 2.0*C2*(Q);

}

Now we will concentrate on the state dependent potential energy surfaces. The code

should look like the following:

inline void Velec(const std::valarray<double> &Q,

std::valarray<double> &Vout){

//state 1

Vout[std::slice(0,num_beads,1)] =

D1*pow(1.0 - exp(-B1*(Q - R1)) , 2);

//state 2

Vout[std::slice(num_beads,num_beads,1)] =

D2*pow(1.0 - exp(-B2*(Q - R2) , 2);

//state 3

Vout[std::slice(2*num_beads,num_beads,1)] =

D3*pow(1.0 - exp(-B3*(Q - R3) , 2);

}

35

The gradient of the state dependent potential energy surfaces will be very similar to the

code we just wrote:

inline void dVelec(const std::valarray<double> &Q,

std::valarray<double> &Vout){

//state 1

Vout[std::slice(0,num_beads,1)] =

-2.0*B1*D1*(exp(B1*(R1-Q)))*(exp(B1*(R1 - Q)) - 1.0);

//state 2

Vout[std::slice(num_beads,num_beads,1)] =

-2.0*B2*D2*(exp(B2*(R2-Q)))*(exp(B2*(R2 - Q)) - 1.0);

//state 3

Vout[std::slice(2*num_beads,num_beads,1)] =

-2.0*B3*D3*(exp(B3*(R3-Q)))*(exp(B3*(R3 - Q)) - 1.0);

}

Finally, we’ll code up the coupling terms. Now that we have non-constant coupling, we

need to use if statements to decide which two states we are evaluating the coupling be-

tween. Here is an example of one way we can achieve this.

inline double V_couple(const double &Q, int state1, int state2)

{

if((state1==0 state2==1) || (state1==1 state2==0)){

return A12*exp(-G12*pow(Q - Q12 , 2));

}

else if((state1==0 state2==2) || (state1==2 state2==0)){

return A13*exp(-G13*pow(Q - Q13 , 2));

}

else {

return A23*exp(-G23*pow(Q - Q23 , 2));

}

}

36

For the derivative of the coupling terms, we follow the same format as in V_couple,

but substitute in the derivatives.

inline double dV_couple(const double &Q, int state1, int state2)

{

if((state1==0 state2==1) || (state1==1 state2==0)){

return -2.0*G12*A12*(Q - Q12)*exp(-G12*pow(Q - Q12 , 2));

}

else if((state1==0 state2==2) || (state1==2 state2==0)){

return -2.0*G13*A13*(Q - Q13)*exp(-G13*pow(Q - Q13 , 2));

}

else {

return -2.0*G23*A23*(Q - Q23)*exp(-G23*pow(Q - Q23 , 2));

}

}

Remember that after you make any changes toPotentials.h, you need to recompile

MAVARIC. Please note that the code demonstrations above were written for the sake of

demonstration and are not well optimized. A more efficient implementation would be

to define a single macro any time a series of constants are multiplied in a function.

37

6SECTION

References

[1] N. Ananth, J. Chem. Phys., 2013, 139.

[2] Numerical Recipes Third Edition, Chapter 17; W.H. Press, S. A. Teukolsky, W.T.

Vetterling, B.P. Flannery, 2007

[3] Statistical Mechanics: Theory and Molecular Simulation, M. Tuckerman, 2009

38

	Introduction
	Overview
	Using MAVARIC
	Tutorial Model System
	Input Files
	Compiling and Running MAVARIC

	Monte Carlo
	Sampling
	Dynamics
	Potentials
	Macros
	Valarray
	State Independent Potential
	Gradient of State Independent Potential
	State Specific Potential Energy Surfaces
	Gradient of State Specific Potential Energy Surfaces
	Potential Energy Coupling
	Derivative of Potential Energy Coupling
	Complicated Model

	 References

